
Fault–Tolerant High–Performance Matrix Multiplication∗

John A. Gunnels

Department of Computer Sciences

The University of Texas at Austin

Austin, TX 78712

gunnels@cs.utexas.edu

Daniel S. Katz

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, CA 91109-8099

Daniel.S.Katz@jpl.nasa.gov

Enrique S. Quintana–Ort́ı
Dept. de Informática

Universidad Jaume I

12080 Castellón

Spain

quintana@inf.uji.es

Robert A. van de Geijn
Department of Computer Sciences

The University of Texas at Austin

Austin, TX 78712

rvdg@cs.utexas.edu

FLAME Working Note #2

December 1, 2000

Abstract

In this paper, we extend the theory of algorithmic fault-tolerant matrix-matrix mul-
tiplication, C = AB, in a number of ways. First, we propose low-overhead methods
for detecting errors introduced not only in C but also in A and/or B. Second, we
theoretically show that the methods will detect all errors as long as only one entry is
corrupted. Third, we propose a low-overhead rollback approach to correct errors once
detected. Finally, we give a high-performance implementation of matrix-matrix mul-
tiplication that incorporates these error detection and correction methods. Empirical
results demonstrate that the methods work well in practice with an acceptable level of
overhead relative to high-performance implementations without fault-tolerance.

∗This work was partially supported by the Remote Exploration and Experimentation Project at Caltech’s
Jet Propulsion Laboratory, which is part of NASA’s High Performance Computing and Communications
Program, and is funded by NASA’s Office of Space Science.

1



1 Introduction

The high-performance implementation of many linear algebra operations depends on the
ability to cast most of the computation in terms of matrix-matrix multiplication [2, 3, 6, 12].
High-performance for matrix-matrix multiplication itself results from the fact that, for this
operation, the cost of moving b× b blocks of the operands between the layers of the memory
hierarchy is proportional to b2 which can be amortized over O(b3) computations. These
observations impact algorithmic fault-tolerance for linear algebra routines that spend most
of their time in matrix-matrix multiplication in the following sense:

• If the matrix-matrix multiplication kernel used is fault-tolerant, the operation is largely
fault-tolerant.

• Ensuring the integrity of a b× b block of a matrix can be expected to cost O(b2) time.
This time can be amortized over the O(b3) operations performed with that data.

Thus, not only is the availabity of a fault-tolerant matrix-matrix multiplication an important
first step towards creating fault-tolerance linear algebra libraries, but there is inherently an
opportunity for adding fault-tolerance to matrix-matrix multiplication while retaining high-
performance.

The primary goal for our mechanism is to detect a maximal fraction of errors while
introducing minimal overhead. As argued in the previous paragraph, for the matrix product,
with a cubic cost in floating–point arithmetic operations, we can expect to pay at least a
quadratic cost. Thus, the goal is to find a mechanism with a quadratic cost. We follow, in
that sense, the technique described in [13]. There, in essense, the correctness of C = AB
is established by looking at d = Cw − ABw for a checksum vector w. The matrix-matrix
multiplication is assumed to have been successful if d is of the order of the errors that could
be introduced due to the use of finite precision arithmetic (round-off errors). In this paper,
we generalize this method to C ← αAB +βC, the form of matrix-matrix multiplication that
is part of the level 3 Basic Linear Algebra Subprograms (BLAS) [5], and sharpen the theory
behind the method.

The methods we present are closely related to those described in [11]. That paper pro-
poses to augment matrices A, B, and C as

A? =

(

A
vT A

)

, B? =
(

B Bw
)

, and C? =

(

C Cw
vT C vT Cw

)

.

(Here, both vT and w are checksum vectors.) By noting that in the absence of errors

C? =

(

C Cw
vT C vT Cw

)

=

(

A
vT A

)

(

B Bw
)

=

(

AB ABw
vT AB vT ABw

)

= A?B?,

2



they show how a comparison of vT C with vT AB and Cw with ABw can detect and correct
errors introduced in matrix C.

On the surface, when comparing our methods to [11], it may appear that from an imple-
mentation point of view we simply perform the matrix-vector multiplies separately rather
than as part of augmented matrices. However, our approach differs in a number of ways.
First, we go well beyond the approach in [11] by also developing a sound theory behind the
detection of errors introduced in A and B. Second, by adopting the techniques developed
in [13] we explicitly deal with the question of how to differentiate errors due to corruption
from errors due to round-off. Third, we take a very different approach to the correction of
detected errors by using a rollback method. Finally, by adding fault-tolerance to a high-

performance implementation of matrix-matrix multiplication we verify that the theoretical
results can be implemented without sacrificing high performance.

The rest of the paper is structured as follows. In Section 2 we briefly describe the
intended domain of application for our methods. In Section 3 we expound upon our theory
concerning the effects of the introduction of one error in one of the matrices during a matrix-
matrix multiplication. In Section 4 we describe how to take the results from Section 3
from theory to practice (although still at a high level of abstraction). A working fault-
tolerant implementation of the matrix product based on a high-performance matrix-matrix
multiplication implementation (ITXGEMM [8, 9]) is subsequently given in Section 5. The
experimental results in Section 6 reveal the low overhead introduced in the matrix product
by our fault–detection mechanism. We briefly discuss the current status of the project in
Section 7 and concluding remarks are given in Section 8.

2 Target Application

Within NASA’s High Performance Computing and Communications Program, the Remote
Exploration and Experimentation (REE) project [1] at the Jet Propulsion Laboratory aims to
enable a new type of scientific investigation by taking commercial supercomputing technology
into space. Transferring such computational power to space will enable highly-autonomous,
flexible missions with substantial on-board analysis capability, mitigating control latency
issues due to fundamental light-time delays, as well as inevitable bandwidth limitations in
the link between spacecraft and ground stations. To do this, REE does not intend to develop
a new computational platform, but rather to define and demonstrate a process for rapidly
transferring commercial high-performance computing technology into ultra-low power, fault-
tolerant architectures for space.

The traditional method for protecting spacecraft components against faults caused by
natural galactic cosmic rays and energetic protons has been radiation-hardening. However,
radiation-hardening lowers the clock speed and may increase the required power of a compo-
nent. Even worse, the time needed to design and bring a radiation-hardened component into

3



production guarantees that it will be outdated when it is ready for use in space. Further-
more, it has a high cost which must be spread over a small number of customers. Typically,
at any given time, radiation-hardened components have a power:performance ratio that is
an order of magnitude lower, and a cost that is several orders of magnitude higher than
contemporary commodity off-the-shelf (COTS) components. The REE project is therefore
attempting to use COTS components in space and handling, via software, the faults that
will occur.

Most of the transient faults encountered due to radiation in space will be single event
effects (SEEs); their presence requires that the applications be self-checking, or tolerant of
errors, as the first layer of fault-tolerance. Additional software layers will protect against
errors that are not caught by the application [4]. For example, one such layer would au-
tomatically restart programs which have crashed or hung. This works in conjunction with
self-checking routines: if an error is detected, and the computation does not yield correct
results after a set number of retries, the error handling scheme aborts the program so that
it can be automatically restarted.

SEEs affecting data are particularly troublesome because they typically have fewer obvi-
ous consequences than an SEE that impacts code — the latter would be expected to cause an
exception. Note that since memory will be error-detecting and correcting, faults to memory
will largely be screened; most faults will therefore impact the microprocessor or its L1 cache.

Due to the nature of most scientific codes, including the data processing applications
currently being studied by REE, much of their time is spent in certain common numer-
ical subroutines — as much as 70% in one NGST (Next Generation Space Telescope, the
planned successor to the Hubble Space Telescope) application, for example. Protecting these
subroutines from faults provides one level of protection in an overall software-implemented
fault-tolerance scheme.

3 Detecting Errors

In this section we develop a theoretical foundation for error detection in the operation C =
AB where C, A, and B are m×n, m×k, and k×n, respectively. Here, we use partitionings
of A and B by columns and rows, respectively:

A =
(

a1 · · · ak

)

and B =









b̂T
1
...

b̂T
k









.

4



We also use two (possibly different) checksum vectors:

w =









ω1

...
ωn









and vT =
(

ν1 · · · νm

)

.

For simplicity, we first assume that exact arithmetic is employed and then we discuss the
tolerance threshold for the case where round-off errors are present.

3.1 Exact arithmetic

Consider the operation C = AB and let C̃ be the matrix computed when at most one element
of one of the three matrices is corrupted during the computation. (We primarily consider
a single corruption since most errors will be SEEs.) In other words, view the operation as
atomic and assume that before the computation one element of A or B is corrupted or after
C = AB has been formed one element of C is corrupted. We can think of the error as a
matrix of the form ηeie

T
j added to one of the three matrices; here η is the magnitude of

the error and ek denotes the k–th column of the identity matrix. The possible computed
results are then given in Table 1 in the row labeled “C̃”. Naturally, we wish to detect when
F = C̃ − C is nonzero (or, in the presence of round-off error, “significant”). Thus, we must
compute or approximate the magnitude of F , e.g., as ‖F‖

∞
, but we must do so without

being able to form F . Moreover, relative to the cost of computing C, the computation of
the estimation of ‖F‖

∞
must be cheap.

Matrix Corrupted

Ã = A + ηeie
T
j B̃ = B + ηeie

T
j C̃ = C + ηeie

T
j

C̃ ÃB AB̃ AB + ηeie
T
j

F = C̃ − C ηeib̂
T
j ηaie

T
j ηeie

T
j

‖F‖
∞

|η|‖b̂T
j ‖∞ |η|‖ai‖∞ |η|

d = Fw ηeib̂
T
j w ηωjai ηωjei

‖d‖
∞

|η||b̂T
j w| |η||ωj|‖ai‖∞ |η||ωj|

eT = vT F ηνib̂
T
j ηvT aie

T
j ηνie

T
j

‖eT‖
∞

|η||νi|‖b̂
T
j ‖∞ |η||vTai| |η||νi|

criterion ‖eT‖
∞

(= |νi|‖F‖∞) ‖d‖
∞

(= |ωj|‖F‖∞) ‖d‖
∞

(= |ωj|‖F‖∞)
or

‖eT‖
∞

(= |νi|‖F‖∞)

Table 1: Some measurements and error detection criteria.

5



Right-sided error detection criterion

Consider now the computation of d = C̃w − Cw, where w is a vector with entries ωi = 1,
i = 1, . . . , n. From Table 1 we see that if the corruption is in matrix B or C, ‖d‖

∞
= ‖F‖

∞
.

As we do not have C, but a possibly corrupted approximation C̃, we use A(Bw) instead
of Cw in the computation of d; only three matrix-vector multiplications are then required
to compute d. These matrix-vector multiplications are cheap relative to a matrix-matrix
multiplication. Computing d and its norm is exactly the procedure suggested in [13].

However, if the corruption occurs in A, ‖d‖
∞

= |η||b̂T
j w|, which can be small even if

‖F‖
∞

is large. In particular, if the elements of the j–th row of B sum to zero, ‖d‖
∞

= 0
regardless of the the magnitude ‖F‖

∞
. While this is not likely to happen in practice, the

method is clearly not bulletproof for detecting corruption in A. A simple example of a matrix
encountered in practice which has entries in rows and/or columns that sum to zero is the
matrix derived from a discretization of Poisson’s equation using a five-point stencil.

We will refer to the error detection criterion which places checksum vector w on the right
as a right-sided error detection criterion. This criterion is guaranteed to detect a single error
introduced in B or C. It is highly likely to detect such an error introduced in A.

Left-sided error detection criterion

Next, consider the computation e = vT C̃ − vT C where v is a vector with entries νi = 1,
i = 1, . . . , m. From Table 1 we see that if the corruption is in matrix A or C, ‖e‖

∞
=

‖F‖
∞

. Again, by computing vTC = (vT A)B we can obtain e with only three matrix-vector
multiplications. In this case, if the corruption was in B, ‖e‖

∞
= |η||vTai|, which can be small

even if ‖F‖
∞

is large. In particular, if the elements of the i–th column of A sum to zero,
‖e‖

∞
= 0. Thus, the method is clearly not completely full-proof for detecting corruption of

B.
We will refer to the error detection criterion which places checksum vector w on the left

as a left-sided error detection criterion. This criterion is guaranteed to detect a single error
introduced in A or C. It is highly likely to detect such an error introduced in B.

Two-sided error detection criterion

Clearly, in order to guarantee the detection of the corruption of a single element in one of
the three matrices, one must compute ‖d‖

∞
if the error is in either B or C, and ‖e‖

∞
if the

error is in either A or C.

3.2 Tolerance threshold and round-off errors

Unfortunately, computers are not equipped to deal with infinite precision arithmetic and
rounding errors due to finite precision arithmetic will occur. In our error detection setting

6



this means that, even if no error is introduced in any of the matrices, it may well be the case
that ‖C̃ − C‖ 6= 0.

Round-off error analysis of matrix operations has been a classic area of numerical analysis
for the last half century. A result found in standard textbooks (e.g., [7]) is that for an
implementation of the matrix product C = AB, based on gaxpy, dot product, or outer

product computations, the computed results, fl(AB), satisfies

‖fl(AB)− AB‖
∞
≤ max(m, n, k) u ‖A‖

∞
‖B‖

∞
+ O(u2),

where u is the unit round-off of the machine (the difference between 1 and the next larger
floating-point number representable in that machine).

Therefore, our error detection mechanism should declare that an error has occured when

‖d‖
∞

> τ ‖A‖
∞
‖B‖

∞
or ‖eT‖

∞
> τ ‖A‖

∞
‖B‖

∞
,

with τ = max(m, n, k) u.
These results on thresholds for detecting errors merely reiterate the observations made

in [13].

3.3 Specialization to our situation

As mentioned in Section 2, in the specific situation we are trying to address a corruption
occurs primarily when data reside in the L1 cache of the processor. Thus this corruption
does not necessarily persist during the entire matrix-matrix multiplication. Therefore, it
may be more informative to view matrices C, A, and B partitioned as follows:

C =









C11 · · · C1N

...
. . .

...
CM1 · · · CMN









, A =









A11 · · · A1K

...
. . .

...
AM1 · · · AMK









, and B =









B11 · · · B1N

...
. . .

...
BK1 · · · BKN









,

where Cij is mi × nj , Aip is mi × kp, and Bpj is kp × nj.
Now Cij is computed as a sequence of updates Cij ← AipBpj + Cij and the corruption

will be encountered in exactly one such update. In other words, for one tuple of indices
(i, j, p) one of the operands is corrupted by changing one element. Let us assume that Bpj

is corrupted by ηere
T
s . Then the computed matrix C̃ is equal to C except in the (i, j) block,

which equals Cij + ηa(i,p)
r eT

s , where a(i,p)
r denotes the r–th column of Aip. If w again equals

the vector of all ones, ‖C̃ − C‖
∞

= |η|‖a(i,p)
r ‖

∞
and ‖C̃w − Cw‖

∞
= |η|‖a(i,p)

r ‖
∞

. It follows
that the right-sided detection criterion for detecting errors in B or C still works. The theory
behind the left-sided and two-sided detection criteria can be extended similarly.

7



4 Towards a Practical Implementation

In this section we deal with two issues concerning the practical implementation of a fault-
tolerant high-performance matrix-matrix multiplication kernel. First, in addition to error
detection, we must also be able to correct any errors that are exposed. Second, in order to
maintain high-performance, we must let the theory guide us to a scheme that imposes as
little overhead as is possible.

Consider C = αAB + βC where C, A, and B have dimensions m× n, m× k and k × n,
respectively. The cost of this operation is given by 2mnk floating point operations (FLOPs).

4.1 Right-sided error detection method

Thus, a simple approach is to compute D = AB, and check the computed D̃ by testing if
‖D̃w − A(Bw)‖

∞
< τ ‖A‖

∞
‖B‖

∞
. If the condition is met, then C ← αD + βC; otherwise

D is recomputed. (Note: our assumption is that a copy of A or B is corrupted in some level
of cache memory. Thus, the recomputation can use the original data in A and B.) If a more
stringent threshold is used a false error due to roundoff can occur. In this case one can check
if ‖D̃w − A(Bw)‖

∞
is exactly equal twice in a row in which case C is updated since this

would indicate that the scheme resulted in a false detection due to round-off error.
The overhead from error detection is 2mn flops for forming D̃w and 2kn + 2mk flops

for forming A(Bw) for a total of 2mn + 2kn + 2mk flops. In addition, the computations of
‖A‖

∞
and ‖B‖

∞
cost O(mk) and O(kn), respectively. If even a single error is detected, the

cost of the operation doubles. Also storage for D, mn floating point numbers, is required.

4.2 Left-sided error detection method

A simple approach is to again compute D = AB, and check the computed D̃ by testing if
‖vT D̃− (vT A)B‖

∞
< τ ‖A‖

∞
‖B‖

∞
. If the condition is met, then C ← αD + βC; otherwise

D is recomputed. If ‖vT D̃ − (vT A)B‖
∞

is exactly equal twice in a row, C is updated since
it is assumed that a corruption was erroneously detected.

A more sophisticated approach partitions B, C, and D as

B =
(

B1 · · · BN

)

, C =
(

C1 · · · CN

)

, and D =
(

D1 · · · DN

)

,(1)

and computes Dj = ABj . After each such computation, the magnitude of ‖vT D̃i − yTBi‖∞
is checked, where yT = vT A can be computed once and reused. As before, if no error is
detected, C̃i ← αD̃i + βCi; otherwise Di is recomputed. Now only workspace for one Di is
required and fewer computations need to be repeated when an error is detected. (Note that
this is not possible for the right-sided approach since for each Biw the product A(Biw) must
be computed, which is expensive when Bi has few columns, as it is in our implementation
described in the experimental section.)

8



Given a column partition of matrices Dj and Bj of width nb, the overhead from error
detection is now 2mk flops for forming yT = vT A, 2mnb flops for forming vT D̃j and 2knb

flops for forming vT Bj. Taking into account that n/nb panels of D must be computed, the
total overhead becomes 2mn+2kn+2mk flops, equivalent to the cost of the right-sided error
detection scheme above. In addition, the computations of ‖A‖

∞
and ‖Bj‖∞, j = 1, . . . , N ,

cost O(mk) and O(kn), respectively. If a single error is detected during the update of C,
only 2mnbk flops are repeated. In this case, only storage for one panel Dj, mnb floating
point numbers, is required.

4.3 Two-sided error detection

Naturally the two above mentioned techniques can be combined to yield a two-sided error
detection method. Here all of D is computed using a left-sided error detection method, after
which a right-sided error detection method is used to verify that no undetected errors slipped
by. If no errors are detected, C is appropriately updated.

The computational cost of two-sided error detection is exactly twice that of the one-sided
error detection methods. Storage for all of D is required, or mn floating point numbers.
However, most of the time the left-sided error detection scheme will detect errors and thus
the overhead for correcting a single error is only 2mnbk flops.

4.4 Reducing overhead

Even in the case where no error is ever detected, the above schemes, particularly the right-
and two-sided approaches, carry a considerable overhead in required workspace. In addition,
if an error is detected for the methods, the cost of recomputation can double the overall cost
of the matrix-matrix multiplication. In this section we discuss how both of these overheads
can easily be overcome.

Specifically, partition C, A, and B as

C =









C11 · · · C1N

...
. . .

...
CM1 · · · CMN









, A =









A11 · · · A1K

...
. . .

...
AM1 · · · AMK









, and B =









B11 · · · B1N

...
. . .

...
BK1 · · · BKN









(2)

where Cij is mi × nj , Aip is mi × kp, and Bpj is kp × nj. (While this partitioning looks
remarkably like the one in Section 3.3, the discussion in that section has no bearing on the
discussion below.) Then C can be computed by a scaling C ← βC followed by updates
Cij ← αAipBpj + Cij, i = 1, . . . , M , j = 1, . . . , N , p = 1, . . . , K. Each of these individual
updates can use the error detection schemes described above. Now workspace can be greatly
reduced as can the cost of a recomputation. Moreover, there are a number of opportunities

9



for the reuse of results Bpjw, vT Aip, ‖Bpj‖∞, and ‖Aip‖∞, where now w and v have length
nj and mi, respectively.

Notice that the proposed error detection and correction scheme can now handle multiple
errors, as long as only one error occurs during the computation AipBpj .

5 An Actual Implementation

In this section we briefly outline our implementation of the ideas presented above.
We start by describing a high-performance implementation of matrix-matrix multiplica-

tion, ITXGEMM [8], developed at UT-Austin in collaboration with Dr. Greg M. Henry at
Intel Corp. To understand how ITXGEMM uses hierarchical memory to attain high per-
formance recall that the memory hierarchy of a modern microprocessor is often viewed as
a pyramid (see Fig. 1). At the top of the pyramid there are the processor registers, with
extremely fast access. At the bottom, there is disk and even slower media. As one goes
down the pyramid, the amount of memory increases along with the time required to access
that memory.

fast

slow
?

6

expensive

cheap
?

6

�
�
�
�
�
�
�
�
�
�
�
�
��

A
A

A
A

A
A

A
A

A
A

A
A

AAregisters

L1 cache

L2 cache
...

local memory

shared memory
...

disk

tape

Figure 1: Hierarchical layers of memory.

As is well-known, processor speed has been increasing much faster than memory speed and
it is thus memory bandwidth that hinders the speed attained in practice for a given operation.
Fortunately, matrix-matrix multiplication involves 2mnk flops and only 2mn+mk+kn data
items. Thus, by carefully moving data between layers of memory, high-performance can be
attained. Note that the cost of error detection is of the same order as the cost for loading

and storing to and from a memory layer.

The particular implementation of matrix-matrix multiplication in ITXGEMM, which we
modified as part of this research, partitions C, A, and B as in (2). The partitioning scheme
used for A is selected so that Aip fills a large part of the L2 cache. For the architecture
chosen for this testing, an Intel PentiumTM III, the optimal partitioning turns out to be

10



Overhead
(mi = kp = 128, nj = 512, b = 8)

m = n = 512, k = 128 m = n = k = 512
Method Detection Correction Detection Correction

right-sided 2.2% 25% 2.2% 6%
left-sided 2.2% 0.4% 2.2% 0.1%
two-sided 4.4% 0.4% 4.4% 0.1%

Table 2: Theoretical overhead for error detection and correction.

mi = kp = 128. Then, B is partitioned so that a reasonable amount of workspace is required
for our right-sided error detection scheme. In particular, we chose nj = 512. This means that
the matrices are partitioned exactly as in (1) and updated as required by the left-sided error
detection scheme, with nb = 8. Code for error detection and correction was a straightforward
addition to an implementation that naturally blocked for efficient utilization of the L1 and
L2 caches of the PentiumTM III processor.

If we consider all floating point operations to be equal and we count the cost of computing
the norm of an m × n matrix as mn flops, we expect the ratios of overhead to useful
computation shown in Table 2. The overhead for correction is for the case when exactly one
corruption occurs during the entire computation. This correction overhead scales linearly
with the number of corruptions. The cost per flop of a matrix-vector multiplication is often
an order of magnitude greater than the cost per flop of a matrix-matrix multiplication.
Thus the above analysis for the cost of error detection may be optimistic by an order of
magnitude. On the other hand, as mentioned, there are opportunities for amortizing the
cost of the computation of matrix-vector multiplies and norms of matrices which are not
taken into account in the above analysis.

6 Experimental Results

All our experiments were performed on a Intel PentiumTM III processor with a 650 MHz
clockrate, 16 Kbytes of L1 data cache and 256 Kbytes of L2 cache, using ieee double-
precision floating-point arithmetic (u ≈ 2.2× 10−16).

6.1 Fault-tolerance under simulated fault conditions

In order to evaluate the reliability of our error detection and correction techniques we decided
to mirror in our experiments what we expect to be a more realistic fault condition behavior
in practice. Thus, instead of introducing an error either in A or B before the computation

11



starts, we introduce the error before one of the updates of the form Cij ← αAipBpj + βCij

is computed. The exact update, the entry were the error appeared (including the matrix, A
or B), and its magnitude are randomly determined.

We do not analyze the case in which the error appears in C since, as stated in our theory
(see Table 1), that error will always be detected using any of the detection methods, (at
least, as long as it makes a non-negligible difference in the result).

The error detection mechanisms performed exactly as expected:

• All significant errors that were introduced in matrix A were detected by the left-sided
sided detection method.

• All significant errors that were introduced in matrix B were detected by the right-sided
sided detection method.

• All significant errors that were introduced in matrices A or B were detected by the
two-sided sided detection method.

• In practice both left- and right-sided methods detected significant errors introduced in
either A or B.

• Whenever we created a matrix A such that the elements in individual columns added
to zero, the left-sided detection method had trouble detecting errors introduced in B.

• Whenever we created a matrix B such that the elements in individual rows added to
zero, the right-sided detection method had trouble detecting errors introduced in A.

6.2 Performance evaluation

Next, we evaluated the overhead introduced in practice by our error detection/correction
techniques. We added the error detection and correction mechanisms described in the previ-
ous sections to the implementation of matrix-matrix multiplication described in ITXGEMM.
In [9] we show that this implementation (without error detection and correction) is highly
competitive with other efforts (e.g. [14]) to provide high-performance matrix-matrix multi-
plication for the Intel PentiumTM III processor.

We report results for the following fault-tolerant matrix-matrix multiplication implemen-
tations:

– L/R/2-sided detect: ITXGEMM-based implementation with left/right/two-sided de-
tection.

– L/R/2-sided correct: ITXGEMM-based implementation with left/right/two-sided de-
tection and correction.

12



0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500

550

Matrix size (m=n) with k=128

M
flo

ps

ITXGEMM       
R−sided detect
L−sided detect
2−sided detect

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500

550

Matrix size (m=n) with k=128

M
flo

ps
ITXGEMM        
R−sided correct
L−sided correct
2−sided correct

(a) (b)

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500

550

Matrix size (m=n=k)

M
flo

ps

ITXGEMM       
R−sided detect
L−sided detect
2−sided detect

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500

550

Matrix size (m=n=k)

M
flo

ps

ITXGEMM        
R−sided correct
L−sided correct
2−sided correct

(c) (d)

Figure 2: Performance of the matrix product kernels.

13



A significant error was introduced in matrix A as described in the previous subsection. The
error was always detected and, if desired, corrected.

Figure 2 shows the performance achieved by the different matrix products implementa-
tions for rank-k updates (m = n, k = 128) and general square matrix products (m = n = k).
For this prototype implementation, the error detection methods reduce performance by 20-
25% even if no error is introduced. When a single error is introduced and corrected, the
performance of the right-sided detection and correction method is significantly worse. The
performance of the left-sided method is not significantly affected. This supports the obser-
vations made in Section 4.2. Since the left-sided error detection and correction methods also
detects and corrects virtually all errors introduced in B, the two-sided method is also not
significantly affected.

It should be noted that we expect to reduce overhead significantly by carefully amortizing
the required additional computations.

7 Status

We currently have a complete implementation of the above ideas for the operations

C ← αAB + βC

C ← αAT B + βC

C ← αABT + βC

C ← αAT BT + βC

Using similar techniques, we have also created fault-tolerant implementations for all the level
3 BLAS operations using our Formal Linear Algebra Methods Environment [9, 10]. While
we currently only target double-precisions real arithmetic, and only have implementations
for the Intel PentiumTM III processor, the techniques are easily extended to single-precision
or complex arithmetic and to other architectures.

The ultimate goal is to create an environment for developing fault-tolerant linear algebra
libraries, the Formal Linear Algebra Recovery Environment (FLARE), which may eventually
include fault-tolerant implementations for the major operations included in LAPACK.

8 Conclusion

In this paper, we have significantly extended the theory behind and practice of algorithmic
fault-tolerant matrix-matrix multiplication. In particular, we have expanded upon existing
results relevant to the detection of errors in the computation C = AB. Based on these theo-
retical results, we have provided a practical, fault-tolerant, high-performance implementation

14



of the matrix-matrix multiplication operation. It should be obvious that the results extend
to all cases of matrix-matrix multiplication that are part of the BLAS. The experimental
results demonstrate that our methods introduce in practice an acceptable level of overhead
(about 20% for the error detection mechanism and an insignificant additional amount when
a correction is required) relative to high-performance implementations that do not include
algorithmic fault-tolerance.

Additional Information

For additional: http://www.cs.utexas.edu/users/flame/FLARE/.

References

[1] Remote Exploration and Experimentation Project Plan, July 2000.
http://ree.jpl.nasa.gov/.

[2] E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCroz, A. Greenbaum, S. Ham-
marling, A. E. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide.
SIAM, Philadelphia, 1992.

[3] E. Barragy and R. van de Geijn. BLAS performance for selected segments of a high p
EBE finite element code. International Journal on Numerical Methods in Engineering,
38:1327–1340, 1995.

[4] F. Chen, L. Craymer, J. Deifik, A. J. Fogel, D. S. Katz, A. G. Silliman, Jr., R. R. Some,
S. A. Upchurch, and K. Whisnant. Demonstration of the Remote Exploration and
Experimentation (REE) fault-tolerant parallel-processing supercomputer for spacecraft
onboard scientific data processing. In Proceedings of the IEEE Int. Conf. on Dependable

Systems and Networks, 2000.

[5] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff. A set of level 3
basic linear algebra subprograms. ACM Trans. Math. Soft., 16(1):1–17, March 1990.

[6] Jack J. Dongarra, Iain S. Duff, Danny C. Sorensen, and Henk A. van der Vorst. Solving

Linear Systems on Vector and Shared Memory Computers. SIAM, Philadelphia, PA,
1991.

[7] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins
University Press, Baltimore, 2nd edition, 1989.

15



[8] J. Gunnels, G. Henry, and R. van de Geijn. Toward dynamic high-performance matrix
multiplication kernels. Technical report, Dept. of Computer Sciences, The University
of Texas at Austin, 2000. in preparation.

[9] John A. Gunnels, Greg M. Henry, and Robert A. van de Geijn. Formal Linear Alge-
bra Methods Environment (FLAME):overview. FLAME Working Note #1 CS-TR-00-
28, Department of Computer Sciences, The University of Texas at Austin, Nov. 2000.
http://www.cs.utexas.edu/users/flame/.

[10] John A. Gunnels and Robert A. van de Geijn. Formal methods for high-performance
linear algebra libraries. In Ronald F. Boisvert and Ping Tak Peter Tang, editors, The

Architecture of Scientific Software. Kluwer Academic Press, 2001.

[11] K. Huang and J.A. Abraham. Algorithm–based fault tolerance for matrix operations.
IEEE Trans. on Computers, 33(6):518–528, 1984.

[12] B. K̊agström, P. Ling, and C. Van Loan. GEMM-based level 3 BLAS: High performance
model implementations and performance evaluation benchmark. TOMS, 24(3):268–302,
1998.

[13] M. Turmon, R. Granat, and D. Katz. Software–implemented fault detection for high–
performance space applications. In Proceedings of the IEEE Int. Conf. on Dependable

Systems and Networks, 2000. to appear.

[14] R. Clint Whaley and Jack J. Dongarra. Automatically tuned linear algebra software.
In Proceedings of SC’98, 1998.

16


